USING FOLIAR FUNGICIDES TO MANAGE SOYBEAN RUST

Editors
Anne E. Dorrance
Associate Professor and Extension Specialist
Department of Plant Pathology
Ohio Agricultural Research and Development Center
The Ohio State University

Martin A. Draper
National Program Leader, Plant Pathology
USDA-CSREES

Donald E. Hershman
Professor and Extension Specialist
Department of Plant Pathology
University of Kentucky

Acknowledgments
Support for this endeavor was supplied to AED and NCERA-208 through USDA-CSREES Smith-Lever Special Needs Funds.

A special thank you for support from the soybean producers through financial support from the soybean checkoff from the North Central Soybean Research Program, Plant Health Initiative, and Dr. David Wright.

A special thank you to Ohio State University Extension Director Keith Smith and Ohio Agricultural Research and Development Center Director Steven Slack for their support in this endeavor.

For updates and current information, visit: http://www.oardc.ohio-state.edu/SoyRust/

Trade Names
Trade names, suppliers, or other private labels are used for identification. No product endorsement is implied nor is discrimination intended toward similar products or materials not mentioned or listed. Ohio State University Extension and the participating universities and the Ontario Ministry of Agriculture, Food, and Rural Affairs make no warranty or guidance of any kind, expressed or implied, concerning the use of these products.

Trade and manufacturers’ names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.

Copyright © 2007 Land-Grant Universities Cooperating NCERA-208 and OMAF.
Revised October 2007.
2008

Using Foliar Fungicides to Manage Soybean Rust

An Activity of NCERA-208

1 Economic Importance of Soybean Rust
Anne Dorrance, The Ohio State University; Donald Hershman, University of Kentucky; Martin Draper, USDA-CSREES
Soybean Rust Disease Symptoms
Soybean Rust Disease Cycle
Annual Survival and Movement of Phakopsora pachyrhizi
Management Overview
Importance of Applying Fungicides Correctly
Recent Fungicide Special Labeling Activities
Purpose of Publication

Edward Sikora, Auburn University; Donald Hershman, University of Kentucky
Economic Importance of Soybean Rust
Observations from 2005
Observations from 2006
Observations from 2007
Lessons Learned
Information Is Key

3 The Importance of Risk Assessment
X. B. Yang, Iowa State University; Alison Robertson, Iowa State University
Factors to Consider in Determining Risk

4 The Sentinel Plot System: Monitoring Movement of an Invasive Pathogen
Loren Giesler, University of Nebraska-Lincoln; Robert Kemerait, University of Georgia;
Layla Sconyers, University of Georgia
Sentinel Plots in the United States
Utilization of Spore Traps in Predicting Soybean Rust Spread

5 Sentinel Plots in the United States: Modeling the Seasonal Spread of Soybean Rust in North America
Forecasting the Risk from Soybean Rust

6 Soybean Growth and Development
Palle Pedersen, Iowa State University; Saratha Kumudini, University of Kentucky; James Board, Louisiana State University Agricultural Center;
Shawn Conley, University of Wisconsin
Soybean Morphology
Soybean Development
Development and Yield
Stresses and How They Impact Yield
Where to Get Answers to Your Questions about Soybean Rust

Alabama
Edward J. Sikora
Auburn University
Department of Entomology and Plant Pathology
961 S Donahue Dr.
Auburn, AL 36849
Phone: 334-844-5502
sikorej@auburn.edu

Arizona
Judith K. Brown, State Coordinator (AZ and Mexico)
The University of Arizona
Department of Plant Sciences
1140 E. South Campus Drive
Tucson, AZ 85721-0036
Phone: 520-621-1402
jbrown@ag.arizona.edu

Arkansas
Scott Monfort
University of Arkansas
Department of Plant Pathology
Cooperative Extension Service
2900 Hwy 130
East Stuttgart, AR 72160
870-673-2661
smonfort@uaex.edu

California
Steven R. Temple
UC Davis
Department of Plant Sciences
Mail Stop One
One Shields Avenue
Davis, CA 95616
Phone: 530-752-8216
srtemple@ucdavis.edu

Colorado
Howard F. Schwartz
Colorado State University
Department of Bioagricultural Science and Pest Management
C205 Plant Science Building
Fort Collins, CO 80523
Phone: 970-491-6987
howard.schwartz@colostate.edu

Delaware
Bob Mulrooney
University of Delaware
Plant and Soil Sciences Department
148 Townsend Hall
Newark, DE 19716-2170
Phone: 302-831-4865
bobmul@udel.edu

Florida
James J. Marois
University of Florida, NFREC - IFAS
Department of Plant Pathology
155 Research Road
Quincy, FL 32351-9803
Phone: 850-875-7120
jmarosi@ufl.edu

Georgia
Dr. Bob Kemerait
University of Georgia
Coastal Plain Experiment Station
PO Box 748
4604 Research Way
Tifton, GA 31793
Phone: 229-386-7495
kemerait@uga.edu

Idaho
Shree P. Singh
University of Idaho
Research and Extension Center
3793 No 3600 East
Kimberly, ID 83341
Phone: 208-423-6609
singh@kimberly.uidaho.edu

Illinois
Carl Bradley
University of Illinois
Department of Crop Sciences
1102 S Goodwin Ave
Urbana, IL 61801
Phone: 217-244-7415
carlbrad@uiuc.edu
<table>
<thead>
<tr>
<th>State</th>
<th>Full Name</th>
<th>Institution</th>
<th>Department</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montana</td>
<td>Barry J. Jacobsen</td>
<td>Montana State University</td>
<td>Department of Plant Sciences</td>
<td>205 Ag Biosciences</td>
<td>406-994-5161</td>
<td>uplbj@montana.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PO Box 173150</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bozeman, MT 59717-3150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebraska</td>
<td>Loren J. Giesler</td>
<td>University of Nebraska-Lincoln</td>
<td>Department of Plant Pathology</td>
<td>448 Plant Science Hall</td>
<td>402-472-2559</td>
<td>Lgiesler1@unl.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lincoln, NE 68583-0722</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Jersey</td>
<td>Ann Brooks Gould</td>
<td>Rutgers University</td>
<td>Department of Plant Biology and Pathology</td>
<td>370 Foran Hall/Cook Campus</td>
<td>732-932-9375</td>
<td>gould@aesop.rutgers.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>59 Dudley Rd.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>New Brunswick, NJ 08901</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td>Natalie P. Goldberg</td>
<td>New Mexico State University</td>
<td>Department of Entomology and Plant Pathology</td>
<td>Coop Ext MSC3AE Plant Sciences</td>
<td>575-646-1621</td>
<td>ngoldber@nmsu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PO Box 30003 - 140 Skeen Hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Las Cruces, NM 88003-8003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>Gary C. Bergstrom</td>
<td>Cornell University</td>
<td>Department of Plant Pathology</td>
<td>334 Plant Science Building</td>
<td>607-255-7849</td>
<td>gcb3@cornell.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ithaca, NY 14853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>Stephen R. Koenning</td>
<td>North Carolina State University</td>
<td>Department of Plant Pathology</td>
<td>Campus Box 7616</td>
<td>919-515-3905</td>
<td>srkpp@unity.ncsu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Raleigh, NC 27695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Dakota</td>
<td>Sam Markell</td>
<td>North Dakota State University</td>
<td>Department of Plant Pathology</td>
<td>306 Walster Hall, Box 5012</td>
<td>701-231-7056</td>
<td>samuel.markell@ndsu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fargo, ND 58105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td>Anne E. Dorrance</td>
<td>Ohio State University - OARDC</td>
<td>Department of Plant Pathology</td>
<td>1680 Madison Ave</td>
<td>330-202-3560</td>
<td>dorrance.1@osu.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wooster, OH 44691-4096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oklahoma</td>
<td>John Damicone</td>
<td>Oklahoma State University</td>
<td>Department of Entomology and Plant Pathology</td>
<td>127 Noble Research Center</td>
<td>405-744-9962</td>
<td>john.damicone@okstate.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stillwater, OK 74078-3033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oregon</td>
<td>Cynthia M. Ocamb</td>
<td>Oregon State University</td>
<td>Department of Botany and Plant Pathology</td>
<td>2082 Cordley Hall</td>
<td>541-737-4020</td>
<td>ocambc@science.oregonstate.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corvallis, OR 97331-2902</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pennsylvania
Scott A. Isard
The Pennsylvania State University
Departments of Plant Pathology and Meteorology
205 Buckhout Lab
University Park, PA 16802
Phone: 814-865-6290
sai10@psu.edu

Puerto Rico
Consuelo Esteves de Jensen
University of Puerto Rico
Crop Protection Department
Sustation Juana Diaz
Carr 510, Km. 3.2 Bo. Sabana Llana Juana Diaz, 00795
Puerto Rico
cestevez@uprm.edu

South Carolina
John D. Mueller
Clemson University
Department of Entomology, Soils, and Plant Sciences
Edisto Research & Education Center
64 Research Road
Blackville, SC 29817
Phone: 803-284-3343 ext. 223
jmllr@clemson.edu

South Dakota
Brad Ruden
South Dakota State University
Department of Plant Science
SPSB 153, Box 2108, Jackrabbit Drive Brookings SD 57007
Phone: 605-688-5545
bradley.ruden@sdstate.edu

Tennessee
Melvin A. Newman
University of Tennessee
Department of Entomology and Plant Pathology
605 Airways Blvd
Jackson, TN 38301
Phone: 731-425-4718
manewman@utk.edu

Texas
Thomas Isakeit
Texas A&M University
Department of Plant Pathology and Microbiology
2132 TAMU
College Station, TX 77843
Phone: 979-862-1340
t-isakeit@tamu.edu

Virginia
Erik Stromberg
Virginia Polytechnic Institute and State University
Department of Plant Pathology, Physiology and Weed Science
401 Price Hall
Blacksburg, VA 24061-0331
Phone: 540-231-7871
elstrom@vt.edu

Washington
Phil Miklas
Washington State University
USDA, ARS, IAREC
24106 No. Bunn Road
Prosser, WA 99350-9687
Phone: 509-786-9258
pmiklas@pars.ars.usda.gov

West Virginia
Agricultural Plant Pathologist
West Virginia Department of Agriculture
Plant Industries Division
1900 Kanawha Blvd., E. Charleston, WV 25305-0191
Phone: 304-558-2212
tcarrington@ag.state.wv.us

Wisconsin
Paul Esker
University of Wisconsin-Madison
Department of Plant Pathology
1630 Linden Drive
Madison, WI 53706
Phone: 608-890-1999
pde@plantpath.wisc.edu
Wyoming
Gary D. Franc
University of Wyoming
Plant Sciences Dept 3354
1000 E University Ave.
Laramie, WY 82071
Phone: 307-766-2397
francg@uwyo.edu

CANADA

Alberta
Ron Howard
Alberta Agriculture and Food
Crop Diversification Centre South
301 Horticultural Station Road East
Brooks, Alberta T1R 1E6
Canada
Phone: 403-362-1328
ron.howard@gov.ab.ca

Ontario
Albert Tenuta
Ontario Ministry of Agriculture, Food and Rural Affairs
P.O. Box 400
120 Main St E
Ridgetown, ON N0P 2C0
Canada
Phone: 519-674-1617
albert.tenuta@ontario.ca
Correct assessment of the risk of soybean rust is key to making effective and economical fungicide applications. Like corn and wheat rusts, soybean rust spreads from south to north during the growing season. Thus, it is possible to assess progressive risk of soybean rust over a growing season and use this information to make informed fungicide-use decisions.

Three factors are key in determining the risk of soybean rust movement into more northern soybean production regions:

- The extent of soybean rust during the spring and early summer in the Gulf Coast area, which determines the amount of spores available to blow northward.
- The July-August weather that determines how favorable local conditions are for soybean rust development.
- Forecasted or observed northward movement of soybean rust spores in weather systems and rust observations in sentinel plots.

Producers in many soybean production areas in North America may be able to assess the risk of seasonal outbreaks using the following steps throughout the year:

- **March**
 - Monitor information (Figure 3.1 and Figure 3.2) on the occurrence of soybean rust in the Gulf Coast states (Alabama, Florida, Louisiana, Mississippi, and Texas) and Georgia. This will be an early indication of the likelihood of rust spore movement into more northern production areas as the season progresses.

- **April, May, and June**
 - Closely monitor reports on soybean rust occurrence in Alabama, Louisiana, Mississippi, and Texas. These states comprise the region that might act as a rust pathway to the north. Georgia is also a state to watch, but has less predictive impact than the other states. If outbreaks occur on soybean plants or kudzu in any of these states during this period, the spores are likely to reach northern soybean regions as early as July.

A network of sentinel plots stretching from the Gulf Coast and into the upper Midwest and Canada provides critical ground-truth information on the actual occurrence and progress of soybean rust in North America (see Chapter 4). Check the USDA public soybean rust web site (www.sbrusa.net) to monitor the northward movement of this disease and to gain access to state-
specific commentaries and recommendations developed by state Extension specialists.

Factors to Consider in Determining Risk

The decision to spray or not to spray fungicides for control of soybean rust is complex. Fungicides are highly effective at controlling soybean rust, but there are several factors to consider in making spray decisions to manage soybean rust. It still is expected that although soybean rust could affect soybean production throughout North America, it will be endemic in the southeastern states and seasonal in northern states. Disease epidemics are also likely to vary from season to season. Thus, spray decisions (i.e., determining the need to spray, when to spray, and the number of sprays) will be different from region to region and season to season. Generally, a fungicide should not be applied for soybean rust control until the risk of infection is high.

These criteria are the basis of soybean rust risk assessment:

1. Crop Stage

Data from the southeastern United States indicates that the most critical period for soybean rust management is from beginning flowering (R1) through full seed (R6). In other

Figure 3.1. USDA maps (www.sbrusa.net) depicting soybean rust overwintering sites during 2006.

Figure 3.2. USDA maps (www.sbrusa.net) depicting soybean rust overwintering sites during 2007.
Using foliar fungicides to manage soybean rust

Words, fungicide sprays before beginning flowering or after full seed may not produce an economical return. However, there are limited data from Brazil showing that fungicide applications made during the vegetative stages are occasionally economical. The same is true for fungicide applications at R6 in the southern United States.

2. Output from Soybean Rust Forecasting Systems

Outbreaks of disease are highly associated with rain and especially above-normal rainfall patterns. Forecasting systems can be effective decision-making tools for managing soybean rust. These systems can be simple, with disease forecasts being based on observations from sentinel plots, or with forecasts being based on complex computer models, rust spore movement, and current and predicted weather. Computer models have been developed for soybean rust forecasting and are currently being applied. (See Chapter 5 for more information on soybean rust modeling efforts.)

3. Results of Scouting, Detection, and Diagnostic Activities

The sentinel plot system has been used effectively in the southeastern United States to indicate when fungicide application is necessary. Spray warnings are given once soybean rust is found in sentinel plots. Because soybean rust is usually first observed on plants of more advanced growth (beginning flowering [R1] or later), the sentinel plantings have provided an opportunity to observe the first signs of the disease before the disease gets a foothold in neighboring production fields. In addition, sentinel plot data from the Southeast has been very useful to soybean producers in the Mid-South, Midwest, Northeast, and Canada who are attempting to establish their soybean rust risk.

For those producers who would rather wait for local rust disease development before deciding to apply a fungicide for soybean rust control, field scouting can be done, but great care must be taken. It is very easy to miss the early stages of soybean rust in a field, and there is significant risk that by the time you see the disease, it may be too late to get complete control. To determine if soybean rust is present and at what level, a thorough visual examination of soybean plants in fields, over time, is crucial. When walking through fields, periodically stop and closely examine the soybean plants. Look down into the lower plant canopy because this is where initial soybean rust pustules usually first develop. Closely examine the undersides of leaves for tell-tale pustules of soybean rust. Be sure to examine several sites throughout each field; do not restrict scouting activities to the edges of fields.
Since rust fungi, in general, require free moisture and/or high humidity to germinate and infect leaves, focus on shaded areas of the field, low spots, or areas of poor air circulation. If there are places in a field with a distinct yellowing or browning, these areas should be targeted in addition to the standard scouting pattern being used. If soybean rust is suspected, collect samples and carry or overnight them to your state’s plant disease diagnostic laboratory. Alternatively, report the location to your local Extension office immediately. The earlier rust is detected, the more likely it is that fungicide applications will be effective.

Be aware that several other foliar diseases are easily confused with soybean rust, especially when rust is in the early stages of pustule formation. (See Chapter 12 on Similar Looking Diseases.)

4. Single vs. Multiple Fungicide Applications

The number of fungicide sprays required to achieve acceptable control of soybean rust will depend on five main factors:

- The stage of crop development when the disease first appears.
- The incidence and severity of infection as determined by crop scouting.
- Current and forecasted weather conditions.
- Price of soybeans.
- Cost of application.

The earlier in the growing season soybean rust is detected, the more sprays may be needed to achieve acceptable disease control. More than one application may be needed if the first application is made at or before beginning flowering (R1), and the weather continues to favor rust development. However, if growing conditions are hot with less than normal rainfall, soybean rust is unlikely to develop to damaging levels, and fungicide applications may not be needed at all. To avoid mistakes and possible crop failures, producers should discuss spray options with someone who is familiar with local farm operations and also familiar with soybean rust biology and the range of fungicide control options.

5. Timing of Fungicide Applications

When it comes to timing of application, there are two obvious mistakes, both of which can be very costly. Soybean rust can spread very quickly, and poor timing of fungicide sprays would be followed by disease-control failure. Spraying too early can result in the fungicide wearing off by the time infection occurs. Conversely, waiting until the disease has progressed too far to spray will not stop the disease. The ideal time to make the first fungicide application for soybean rust control is when the risk of
infection is high, but before infection occurs; this is the purpose of sentinel plots and disease forecasting.

A word of caution: Each fungicide has a unique preharvest interval indicated on the product label (see Table 3.1 and Appendix Table B.2 for a full list). If a fungicide spray is needed for soybean rust control late in the season, this preharvest interval, which varies from as short as 14 days to as long as 42 days, may have a great impact on which fungicide you may legally apply. For some fungicides, the specific growth stage is listed — the number of days that a variety is at a specific growth stage will also vary from year to year and region to region. To avoid problems, it is prudent to ascertain a product’s preharvest interval BEFORE making an application.

6. Information Reliability

We are exposed to information from a wide range of sources — from the corner coffee shop to the Internet, to publications and newscasts. It is important that growers base fungicide spray decisions on information from unbiased, reputable sources. These include university cooperative extension services, government, industry or commodity group web sites, and newsletters or news releases from these organizations.

7. Understanding Risks Associated With Fungicide Spray Decisions

It is imperative that growers follow spray guidelines and adhere to the labeled rates for each fungicide. As previously mentioned, the method of

<table>
<thead>
<tr>
<th>Fungicide Class</th>
<th>Product</th>
<th>Preharvest Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloronitrile</td>
<td>Bravo, Echo</td>
<td>42</td>
</tr>
<tr>
<td>Strobilurins</td>
<td>Quadris</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Headline</td>
<td>21</td>
</tr>
<tr>
<td>Triazoles</td>
<td>Caramba, Topguard</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Folicur</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Alto, Punch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bumper, Domark</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Laredo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propimax</td>
<td></td>
</tr>
<tr>
<td>Strobilurin & Triazole</td>
<td>Quadris Xtra</td>
<td>30</td>
</tr>
</tbody>
</table>

Table 3.1. Preharvest intervals for soybean rust fungicides.
fungicide application is very important — fungicides must cover the whole plant and get into the canopy to be effective. If the correct equipment (nozzle type, pressure, adjuvants, and timing) is not used, there is considerable risk of failure. Failure to adequately control soybean rust will also occur when poor fungicide decisions are acted on, or when otherwise good decisions are not implemented properly. Either situation is likely to result in reduced economic returns.

Spray decisions may also have an effect on crop insurance claims filed. Therefore, it is essential to keep complete records of what was done and how spray decisions were made. To be in compliance with the law, growers must have a copy of the Section 18/Emergency Use label in their possession when the product is applied. Long-range weather predictions made in April and May, indicating that July and August weather conditions may favor rust outbreaks in the north, should be considered in risk assessment for soybean rust. The current disease models use the weather predictions (precipitation and temperature) to calculate the risk of soybean rust. However, it must be understood that the predictions are subject to error. Thus, the most reliable way to establish the need to spray fungicides for soybean rust control continues to be early disease detection.